otsdaq_prepmodernization  v2_05_02_indev
ethernetFIFO_synth.vhd
1 --------------------------------------------------------------------------------
2 --
3 -- FIFO Generator Core Demo Testbench
4 --
5 --------------------------------------------------------------------------------
6 --
7 -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved.
8 --
9 -- This file contains confidential and proprietary information
10 -- of Xilinx, Inc. and is protected under U.S. and
11 -- international copyright and other intellectual property
12 -- laws.
13 --
14 -- DISCLAIMER
15 -- This disclaimer is not a license and does not grant any
16 -- rights to the materials distributed herewith. Except as
17 -- otherwise provided in a valid license issued to you by
18 -- Xilinx, and to the maximum extent permitted by applicable
19 -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
20 -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
21 -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
22 -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
23 -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
24 -- (2) Xilinx shall not be liable (whether in contract or tort,
25 -- including negligence, or under any other theory of
26 -- liability) for any loss or damage of any kind or nature
27 -- related to, arising under or in connection with these
28 -- materials, including for any direct, or any indirect,
29 -- special, incidental, or consequential loss or damage
30 -- (including loss of data, profits, goodwill, or any type of
31 -- loss or damage suffered as a result of any action brought
32 -- by a third party) even if such damage or loss was
33 -- reasonably foreseeable or Xilinx had been advised of the
34 -- possibility of the same.
35 --
36 -- CRITICAL APPLICATIONS
37 -- Xilinx products are not designed or intended to be fail-
38 -- safe, or for use in any application requiring fail-safe
39 -- performance, such as life-support or safety devices or
40 -- systems, Class III medical devices, nuclear facilities,
41 -- applications related to the deployment of airbags, or any
42 -- other applications that could lead to death, personal
43 -- injury, or severe property or environmental damage
44 -- (individually and collectively, "Critical
45 -- Applications"). Customer assumes the sole risk and
46 -- liability of any use of Xilinx products in Critical
47 -- Applications, subject only to applicable laws and
48 -- regulations governing limitations on product liability.
49 --
50 -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
51 -- PART OF THIS FILE AT ALL TIMES.
52 --------------------------------------------------------------------------------
53 --
54 -- Filename: ethernetFIFO_synth.vhd
55 --
56 -- Description:
57 -- This is the demo testbench for fifo_generator core.
58 --
59 --------------------------------------------------------------------------------
60 -- Library Declarations
61 --------------------------------------------------------------------------------
62 
63 
64 LIBRARY ieee;
65 USE ieee.STD_LOGIC_1164.ALL;
66 USE ieee.STD_LOGIC_unsigned.ALL;
67 USE IEEE.STD_LOGIC_arith.ALL;
68 USE ieee.numeric_std.ALL;
69 USE ieee.STD_LOGIC_misc.ALL;
70 
71 LIBRARY std;
72 USE std.textio.ALL;
73 
74 LIBRARY work;
75 USE work.ethernetFIFO_pkg.ALL;
76 
77 --------------------------------------------------------------------------------
78 -- Entity Declaration
79 --------------------------------------------------------------------------------
81  GENERIC(
82  FREEZEON_ERROR : INTEGER := 0;
83  TB_STOP_CNT : INTEGER := 0;
84  TB_SEED : INTEGER := 1
85  );
86  PORT(
87  WR_CLK : IN STD_LOGIC;
88  RD_CLK : IN STD_LOGIC;
89  RESET : IN STD_LOGIC;
90  SIM_DONE : OUT STD_LOGIC;
91  STATUS : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
92  );
93 END ENTITY;
94 
95 ARCHITECTURE simulation_arch OF ethernetFIFO_synth IS
96 
97  -- FIFO interface signal declarations
98  SIGNAL wr_clk_i : STD_LOGIC;
99  SIGNAL rd_clk_i : STD_LOGIC;
100  SIGNAL rst : STD_LOGIC;
101  SIGNAL prog_empty : STD_LOGIC;
102  SIGNAL wr_en : STD_LOGIC;
103  SIGNAL rd_en : STD_LOGIC;
104  SIGNAL din : STD_LOGIC_VECTOR(32-1 DOWNTO 0);
105  SIGNAL dout : STD_LOGIC_VECTOR(128-1 DOWNTO 0);
106  SIGNAL full : STD_LOGIC;
107  SIGNAL empty : STD_LOGIC;
108  -- TB Signals
109  SIGNAL wr_data : STD_LOGIC_VECTOR(32-1 DOWNTO 0);
110  SIGNAL dout_i : STD_LOGIC_VECTOR(128-1 DOWNTO 0);
111  SIGNAL wr_en_i : STD_LOGIC := '0';
112  SIGNAL rd_en_i : STD_LOGIC := '0';
113  SIGNAL full_i : STD_LOGIC := '0';
114  SIGNAL empty_i : STD_LOGIC := '0';
115  SIGNAL almost_full_i : STD_LOGIC := '0';
116  SIGNAL almost_empty_i : STD_LOGIC := '0';
117  SIGNAL prc_we_i : STD_LOGIC := '0';
118  SIGNAL prc_re_i : STD_LOGIC := '0';
119  SIGNAL dout_chk_i : STD_LOGIC := '0';
120  SIGNAL rst_int_rd : STD_LOGIC := '0';
121  SIGNAL rst_int_wr : STD_LOGIC := '0';
122  SIGNAL rst_s_wr1 : STD_LOGIC := '0';
123  SIGNAL rst_s_wr2 : STD_LOGIC := '0';
124  SIGNAL rst_gen_rd : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0');
125  SIGNAL rst_s_wr3 : STD_LOGIC := '0';
126  SIGNAL rst_s_rd : STD_LOGIC := '0';
127  SIGNAL reset_en : STD_LOGIC := '0';
128  SIGNAL rst_async_wr1 : STD_LOGIC := '0';
129  SIGNAL rst_async_wr2 : STD_LOGIC := '0';
130  SIGNAL rst_async_wr3 : STD_LOGIC := '0';
131  SIGNAL rst_async_rd1 : STD_LOGIC := '0';
132  SIGNAL rst_async_rd2 : STD_LOGIC := '0';
133  SIGNAL rst_async_rd3 : STD_LOGIC := '0';
134 
135 
136  BEGIN
137 
138  ---- Reset generation logic -----
139  rst_int_wr <= rst_async_wr3 OR rst_s_wr3;
140  rst_int_rd <= rst_async_rd3 OR rst_s_rd;
141 
142  --Testbench reset synchronization
143  PROCESS(rd_clk_i,RESET)
144  BEGIN
145  IF(RESET = '1') THEN
146  rst_async_rd1 <= '1';
147  rst_async_rd2 <= '1';
148  rst_async_rd3 <= '1';
149  ELSIF(rd_clk_i'event AND rd_clk_i='1') THEN
150  rst_async_rd1 <= RESET;
151  rst_async_rd2 <= rst_async_rd1;
152  rst_async_rd3 <= rst_async_rd2;
153  END IF;
154  END PROCESS;
155 
156  PROCESS(wr_clk_i,RESET)
157  BEGIN
158  IF(RESET = '1') THEN
159  rst_async_wr1 <= '1';
160  rst_async_wr2 <= '1';
161  rst_async_wr3 <= '1';
162  ELSIF(wr_clk_i'event AND wr_clk_i='1') THEN
163  rst_async_wr1 <= RESET;
164  rst_async_wr2 <= rst_async_wr1;
165  rst_async_wr3 <= rst_async_wr2;
166  END IF;
167  END PROCESS;
168 
169  --Soft reset for core and testbench
170  PROCESS(rd_clk_i)
171  BEGIN
172  IF(rd_clk_i'event AND rd_clk_i='1') THEN
173  rst_gen_rd <= rst_gen_rd + "1";
174  IF(reset_en = '1' AND AND_REDUCE(rst_gen_rd) = '1') THEN
175  rst_s_rd <= '1';
176  assert false
177  report "Reset applied..Memory Collision checks are not valid"
178  severity note;
179  ELSE
180  IF(AND_REDUCE(rst_gen_rd) = '1' AND rst_s_rd = '1') THEN
181  rst_s_rd <= '0';
182  END IF;
183  END IF;
184  END IF;
185  END PROCESS;
186 
187  PROCESS(wr_clk_i)
188  BEGIN
189  IF(wr_clk_i'event AND wr_clk_i='1') THEN
190  rst_s_wr1 <= rst_s_rd;
191  rst_s_wr2 <= rst_s_wr1;
192  rst_s_wr3 <= rst_s_wr2;
193  IF(rst_s_wr3 = '1' AND rst_s_wr2 = '0') THEN
194  assert false
195  report "Reset removed..Memory Collision checks are valid"
196  severity note;
197  END IF;
198  END IF;
199  END PROCESS;
200  ------------------
201 
202  ---- Clock buffers for testbench ----
203  wr_clk_i <= WR_CLK;
204  rd_clk_i <= RD_CLK;
205  ------------------
206 
207  rst <= RESET OR rst_s_rd AFTER 12 ns;
208  din <= wr_data;
209  dout_i <= dout;
210  wr_en <= wr_en_i;
211  rd_en <= rd_en_i;
212  full_i <= full;
213  empty_i <= empty;
214 
215  fg_dg_nv: ethernetFIFO_dgen
216  GENERIC MAP (
217  C_DIN_WIDTH => 32,
218  C_DOUT_WIDTH => 128,
219  TB_SEED => TB_SEED ,
220  C_CH_TYPE => 0
221  )
222  PORT MAP ( -- Write Port
223  RESET => rst_int_wr,
224  WR_CLK => wr_clk_i,
225  PRC_WR_EN => prc_we_i,
226  FULL => full_i,
227  WR_EN => wr_en_i,
228  WR_DATA => wr_data
229  );
230 
231  fg_dv_nv: ethernetFIFO_dverif
232  GENERIC MAP (
233  C_DOUT_WIDTH => 128,
234  C_DIN_WIDTH => 32,
235  C_USE_EMBEDDED_REG => 0,
236  TB_SEED => TB_SEED,
237  C_CH_TYPE => 0
238  )
239  PORT MAP(
240  RESET => rst_int_rd,
241  RD_CLK => rd_clk_i,
242  PRC_RD_EN => prc_re_i,
243  RD_EN => rd_en_i,
244  EMPTY => empty_i,
245  DATA_OUT => dout_i,
246  DOUT_CHK => dout_chk_i
247  );
248 
249  fg_pc_nv: ethernetFIFO_pctrl
250  GENERIC MAP (
251  AXI_CHANNEL => "Native",
252  C_APPLICATION_TYPE => 0,
253  C_DOUT_WIDTH => 128,
254  C_DIN_WIDTH => 32,
255  C_WR_PNTR_WIDTH => 10,
256  C_RD_PNTR_WIDTH => 8,
257  C_CH_TYPE => 0,
258  FREEZEON_ERROR => FREEZEON_ERROR ,
259  TB_SEED => TB_SEED,
260  TB_STOP_CNT => TB_STOP_CNT
261  )
262  PORT MAP(
263  RESET_WR => rst_int_wr,
264  RESET_RD => rst_int_rd,
265  RESET_EN => reset_en,
266  WR_CLK => wr_clk_i,
267  RD_CLK => rd_clk_i,
268  PRC_WR_EN => prc_we_i,
269  PRC_RD_EN => prc_re_i,
270  FULL => full_i,
271  ALMOST_FULL => almost_full_i ,
272  ALMOST_EMPTY => almost_empty_i ,
273  DOUT_CHK => dout_chk_i,
274  EMPTY => empty_i,
275  DATA_IN => wr_data,
276  DATA_OUT => dout,
277  SIM_DONE => SIM_DONE,
278  STATUS => STATUS
279  );
280 
281 
282 
283 
284 
285  ethernetFIFO_inst : ethernetFIFO_exdes
286  PORT MAP (
287  WR_CLK => wr_clk_i,
288  RD_CLK => rd_clk_i,
289  RST => rst,
290  PROG_EMPTY => prog_empty,
291  WR_EN => wr_en,
292  RD_EN => rd_en,
293  DIN => din,
294  DOUT => dout,
295  FULL => full,
296  EMPTY => empty);
297 
298 END ARCHITECTURE;